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Micro-Autoradiographic Fusion Tomography

James Merker

ABSTRACT

Two-dimensional (2-D) micro-autoradiography is typically used to identify 

the location of a radio-labeled ligand bound to a cellular target in tissue sections. 

Data,  such as  a  histological  image,  combined with  the  autoradiographic  data 

provide a spatial relationship of the radiolabel to cellular structures. However, the 

disadvantage of 2-D imaging is that it  only provides a local distribution of the 

radiolabel within a tissue slice, and not a volumetric regional distribution in the 

structure  of  interest.  The  development  of  3-D  autoradiographic/histological 

visualizations would provide important information not otherwise apparent, such 

as the ability to visualize the distribution of the labeled agents in subcutaneous 

tissue. We plan to obtain digital micro-autoradiographic images and fuse them to 

their  corresponding histological  images using commercially available software. 

We plan to create a series of 2-D fused images. This series of 2-D fused images 

will  then  form  a  basis  for  creating  3-D  visualization  of 

autoradiographic/histological  images  using  another  commercially  available 

software.   These type  of  fused 3-D images,  which we will  refer  to  as micro-

autoradiographic fusion tomography (MAFT), are not currently available.
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We  will  illustrate  the  use  of  MAFT  with  the  distribution  of  vascular 

endothelial  growth  factor  (VEGF)  in  subcutaneous  tissue.  [14C]-VEGF will  be 

injected  into  rat  subcutaneous  tissue.   VEGF  has  been  found  to  stimulate 

angiogenesis, or the growth of new blood vessels, which could prove beneficial 

by aiding the function of an implantable blood glucose sensor.   The diffusion 

coefficient  for  VEGF in  subcutaneous tissue has  not  yet  been characterized. 

MAFT would be an ideal technique to use for this type of study. 

My thesis will address the following specific aims:  1) To label the nicotine 

receptors  in  adult  and  adolescent  rat  brains,  and  to  obtain  digital  micro-

autoradiographic images and histological images; 2) To fuse a 2-D digital micro-

autoradiographic image with a 2-D histological image; 3) To create a 3-D image 

from a series of 2-D fusion images; and 4) To assess the increased information 

value obtained using MAFT. 
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Chapter 1
Background and Significance

1.1 Medical Imaging

Medical imaging uses various techniques to directly or indirectly visualize 

the structure and function of tissue and organs. Structural imaging provides static 

information on the micro- and macroscopic anatomical structure of tissues and 

organs, and can be a valuable diagnostic  tool  for  diseases (e.g.  tumors) and 

injury.  In  contrast,  functional  imaging  is  used  to  discern  alterations  in  living 

processes and can detect alterations in proteins and metabolic processes. In this 

Neurotechnology  Research,  Development,  and  Enhancement  (R21)  grant 

proposal, our focus is on functional imaging techniques of the brain. 

Functional  magnetic  resonance  imaging  (fMRI)  is  a  safe  and  totally 

noninvasive technique that images hemodynamic changes with MRIs.  fMRI has 

recently become one of the most successful tools used to study blood flow and 

perfusion  in  the  brain.  Changes  in  neural  activity  are  accompanied  by  focal 

changes  in  cerebral  blood  flow,  blood  volume,  blood  oxygenation,  and 

metabolism. These changes can be used to produce functional maps of mental 

operation (Kwong and Chesler, 2002). At present, the resolution of fMRI is less 

than  a  millimeter  (Aine,  1995).  Future  high-field  fMRI  scanners  with  field 
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strengths of 3T and beyond, and optimized acquisition techniques, will enhance 

the temporal and spatial resolution (Weiller et al., 2006).

In Positron Emission Tomography (PET) imaging, a biological  molecule 

that carries with it a positron-emitting isotope (e.g. 11C, 13N, 15O, or 18F) is injected 

into the body (Budinger, 2000). Within a few minutes, isotope accumulates in an 

area of the body for which the molecule has an affinity. For example, glucose 

labeled with 11C, or a glucose analogue labeled with 18F, accumulates in regions 

where glucose is used as the primary source of energy such as in the brain or 

tumors (Young et al., 1999). PET measures the emissions and a computer uses 

the data to produce multicolored 2 or 3-D images of the distribution. PET scans 

are increasingly read alongside CT scans or MRI scans, the combination giving 

both anatomic and metabolic information (what the structure is, and what it  is 

doing)  (Connolly  et  al.  2000;  Cunningham,  2000).  PET  has  the  significant 

advantage of being able to identify specific brain receptors by its ability to image 

radiolabeled  receptor  ligand  binding  to  these  proteins.  Most  commercially 

available PET systems have a resolution of approximately 4 mm (Aine, 1995). 

The greatest benefit of PET scanning is that different compounds can be used to 

image blood flow, and oxygen and glucose metabolism. These measurements 

reflect the brain activity in various regions of the brain. The biggest disadvantage 

of  PET is  that  the  radioactivity  decays rapidly  and  hence,  is  limited  to  short 

monitoring tasks. Prior to fMRI, PET scanning was the preferred method of brain 

imaging.

2
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Single photon emission computed tomography (SPECT) uses radiolabeled 

pharmaceuticals  that  distribute  in  different  internal  organs  or  tissues.  SPECT 

uses gamma ray emitting  radioisotopes and a gamma camera.  The recorded 

data  is  used  to  construct  2-D  or  3-D  images  by  a  computer.  A  major 

disadvantage of SPECT is its poor resolution (approximately 1 cm) (Tsui, 2000). 

SPECT can be register to CT images which can provide additional anatomical 

information  (Cunningham,  2000).  SPECT  differs  from  PET  in  the  types  of 

radionuclides used. The disadvantage of PET is that it requires the use of tracers 

with a short half-life that must be produced in a cyclotron, and are expensive. 

Hence, both the performance and instrumentation of SPECT are less than PET. 

1.2 Other Imaging Techniques

Like PET and SPECT, autoradiographic imaging and phosphor imaging 

can also identify the location of specific brain receptors by its ability to image 

radiolabeled receptor ligand binding to the receptor protein. The advantage of 

autoradiographic  and  phosphor  imaging  over  PET  and  SPECT,  is  its  high 

resolution. The disadvantage of autoradiographic imaging and phosphor imaging 

is that they are not techniques that can be used in the clinical arena.

For autoradiography, the location of beta-emitters and some soft gamma-

emitters in biological tissue slices can be achieved by placing the section against 

x-ray  film  or  by  immersion  in  photographic  emulsion.  The  exposure  time  is 

lengthy and a month is not uncommon for tritium labels. The film or exposed 

emulsion is then developed and the activity quantified by optical densitometry.
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Film and emulsion response to radioactivity  is  nonlinear  except  over a 

narrow range following an S-curve.  Activity standards must  be run with each 

batch to  achieve quantification.  If  the exposure time is  too short  or  too long, 

falling towards the extremes of the S-curve, then quantification is not possible. 

With film, re-exposure is needed. With emulsions, the sample must be discarded 

and replaced. Time lost is a common occurrence.

The spatial resolution of film is quite good for lower-energy isotopes (e.g. 

3H,  14C,  35S) and soft gamma-emitters (e.g.  125I and  99mTc) (Rapkin, 2001). The 

spatial resolution for emulsion is excellent for these same isotopes.

The advantage of autoradiography is that it is inexpensive. However, it is 

time consuming. Hence, over the past 15 years, phosphor-imaging has become 

a commonly used method of measuring radioactivity in tissue sections.

In phosphor-imaging, a reusable plastic sheet (storage phosphor screen) 

is used instead of film. The screen stores incident beta energy. After exposure, 

the screen is  read digitally  with  a  laser  scanner  and the ground state of  the 

screen restored so that the screen can be reused. 

For energetic beta-emitters, phosphor-imaging is approximately 10 times 

faster  than  either  film  or  emulsion.  However,  phosphor  imaging  has  several 

disadvantages: 1) tritium is not measurable without special and costly screens; 2) 

resolution  is  less  than  film;  3)  because  of  the  S-shaped  response  curve, 

exposures that are too long or short must be repeated. But more linear than film; 

4) phosphor plates are expensive – from hundreds to over a $1000 each; and 5) 
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phosphor  plates  have  limited  reusability  as  they  become  contaminated  or 

develop latent images.

The  days,  weeks,  or  months  between  sample  preparation  and  data 

interpretation are unacceptable.  Also, the use of isotopes with a short half-life is 

not  possible.  The  Micro-Imager,  a  recently  developed  real-time  digital  beta-

imaging system,  overcomes these problems.  The Micro-Imager  permits  direct 

visualization of results as they are acquired, so that no exposure is too short. 

Results  are  obtained  10-20  times  faster  with  Micro-imaging  than  phosphor-

imaging,  and 100-300 times faster than film and/or  emulsion.  For example,  a 

three month tritium autoradiogram with film takes only 8 hours using the Micro-

Imager.  Dual  labeling  counting  allows competitive  receptor  binding studies  or 

studies  of  the  distribution  of  two  drugs  concurrently  administered.  Counting 

response is linear over a dynamic range of 104, a range 100-1000 times greater 

than film. The resolution is 15  µm for  3H. Hence, the advantages of the Micro-

Imager  for  radioactivity  imaging  of  tissue  slices  are:  1)  speed;  2)  accurate 

quantification;  3) wide dynamic range; 4) routine tritium counting;  and 5) dual 

labeling.

1.3 Micro-Autoradiography

Micro-autoradiography  provides  a  2-D  image  of  the  location  of  the 

radiation source, whereas techniques such as PET and SPECT provide a 3-D 

localization  of  the  radiation  source.  However,  the  resolution  of  micro-
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autoradiography (on the order of a few µm) is much higher than PET or SPECT 

(Lu et al., 2001).

Micro-autoradiography,  generally  uses a nuclear  emulsion  coating  over 

labeled tissue sections. The tissue section may either be stained prior to or after 

the  application  of  the  emulsion  coating  (Rogers,  1979).  The  section  is 

subsequently examined with a microscope (Young and Kuhar, 1979). It allows 

visualizing  the  localization  of  radiolabeled  material  at  the  cellular  level  in 

histological preparations.

There  have  been  limited  previous  studies  of  3-D  reconstructed  serial 

section autoradiographs or phosphor images (Roberson et al., 1992; Mohr et al., 

2004; Hess et al., 1998; Yoshioka et al., 2000). However, the actual distributions 

of  the radiolabels  relative  to  the cellular  histology in  3-D have not  been well 

characterized. The goal of this project was to determine whether a novel micro-

autoradiographic  technique  can  be  used  to  characterize  the  distribution  of 

radiolabels with respect to cellular histology in 3-D that can be used for research.

1.4 Advantages of Radiolabels

     The  use  of  radiolabeled  ligands  to  determine  the  tissue  distribution  of 

receptors is termed in vivo receptor autoradiography if the ligand is administered 

into  the  circulation,  and  in  vitro  receptor  autoradiography  when  radiolabeled 

ligands are applied directly to tissue sections (Yamamura et al., 1974; Young and 

Kuhar, 1979). 

6
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     Our goal is to produce a series of labeled tissue sections through in vivo 

radiolabeling. In vivo labeling is less expensive than using fluorescent dyes or 

quantum dots in vivo. Another disadvantage of using fluorescent dyes is that they 

burn  out  quickly  (Service,  1998).  Many  radiolabels  have  a  long  half-life.  For 

example, 3H has a half-life of 12.28 years. Although quantum dots can fluoresce 

for weeks or longer, their disadvantage is their size. They are about 10 times 

bigger  than  most  organic  dyes  (Seydel,  2003)  and  may  not  permeate  cell 

membranes.  In  vitro  labeling  of  tissue,  by  radiolabels,  fluorescent  dyes  or 

quantum  dots,  that  has  already  been  sectioned  is  very  time  consuming, 

especially for a large number of sections (Tribollet et al., 2004). It  is faster to 

inject a live animal with a radiolabel  and then take tissue sections, e.g. brain 

sections. 

1.5 Difficulties with Micro-Autoradiography Versus Digital Micro-

Autoradiography

In traditional micro-autoradiography, a tissue section on a glass slide is 

manually dipped in emulsion,  and left  for  an exposure period of two or  more 

weeks  -  after  which  time  the  tissue  sections  are  developed.  However,  the 

standard  deviation  in  the  variation  in  the  mean  grain  count  densities  for  10 

sections from the same tissue sample can vary from 6-34% (Humm et al., 1995). 

These variations were attributed principally to the variations in the sensitivity of 

the emulsion across the slide.  As digital  micro-autoradiography does not  use 

emulsions, these difficulties will not arise.
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1.6 Micro-Imaging

The  Micro-Imager  (Biospace  Mesures,  Paris,  France)  offers  a  digital 

solution to micro-autoradiography (Debruyne et al., 2005; Crumeyrolle-Arias et 

al., 2003; Langlois et al., 2001 ; Cloez-Tayarani et al., 1997).  The Micro-Imager 

can be used to quantify the spatial  distribution of radiolabels in a tissue. The 

Micro-Imager  is  based  on  the  work  of  Georges  Charpak  for  which  he  was 

awarded a Nobel Prize in Physics in 1992 (Charpak et al.,  1989). The Micro-

Imager uses a scintillation counting technique and sophisticated analysis of each 

individual decay event to determine location and intensity (Laniece et al., 1994; 

Dausse et al., 1995). The advantage of the Micro-Imager over autoradiography is 

the savings in time. The Micro-Imager produces results 100-300 times faster than 

film (Rapkin, 2001). Another advantage is that the Micro-Imager allows for  dual 

label measurement, with tritium being one of the two labels. Hence, the Micro-

Imager permits studies of the distribution of two drugs concurrently administered 

(Laniece et al., 1998; Salin et al., 2002). The Micro-Imager is well-suited to detect 

ligand receptors (Gautier and Bernand, 2001).

The Micro-Imager’s file formats for exporting autoradiographic and optical 

images are available as jpeg, tiff, bmp and txt files.

1.7 Autoradiographic/Histological Image Fusion

Autoradiographic and optical images obtained from the Micro-Imager are 

already aligned (or registered). We plan to use commercially available imaging 
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software, MCID v.7.0 (InterFocus Imaging Ltd, UK), to align a shrunken version 

of the histological montage image to the optical image. 

The tissue contours in the histological montage and the optical image are 

the  same  (as  these  are  images  of  the  same  tissue  section  and  not  serial 

sections),  so  registering  the  two  images  can  be  done  with  the  MCID  v.7.0 

registration function. 

The registered montage image will then be enlarged and the associated 

registered autoradiograph will also be enlarged by the same scale. MCID v.7.0 

will  then be used to fuse the enlarged montage and autoradiogram together. 

MCID v.7.0 is compatible with the Micro-Imager’s file format as it accepts and 

exports  images  in  monochrome  and  color  tiff.  Image  fusion  can  range  from 

simple addition to weighted addition with layer-specific transparency. MCID also 

has editing features to remove artifacts. We will use a free 14 day trial version to 

illustrate  an  autoradiographic/histological  fusion  in  our  preliminary  results 

described below.

1.8 Difficulties in 3-D Reconstruction of 2-D Micro-Autoradiographs 

In theory, 3-D reconstruction of radiolabels at the cellular level from serial 

2-D  micro-autoradiographs  requires  alignment  of  the  2-D  serial  sections. 

However  in  practice,  the  alignment  of  serial  tissue  sections  is  very  time 

consuming and labor-intensive.  The number of  slides can be on the order of 

hundreds (Lu et al., 2001; Manconi et al., 2001). Three-dimensional estimates of 

absorbed dose based on 2-D autoradiographs in internal radionuclides therapy 
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has been performed using a small number of sections (Lu et al., 2001). However, 

this mathematical estimation method cannot provide information with respect to 

the receptor distribution in the brain. We propose to improve the time consuming 

and labor-intensive process of 3-D reconstruction of 2-D micro-autoradiographs 

by using a combination of commercially available software.

1.9 Alignment of Serial 2-D Sections

As mentioned above the alignment of serial tissue sections is very time 

consuming and labor-intensive. We plan to use a semi-automatic process to align 

the fused montage/autoradiogram sections. The fused montage/autoradiogram 

sections will be reduced in size so that the brain shape can be seen. Alignment 

can be based on the shape of the tissue contour for course alignment, especially 

for tissue with well-defined external boundaries. Internal tissue features such as 

blood vessels, could be used to refine serial  section alignment (Humm et al., 

1995). In Manconi et al. (2001), an outline of the primary intrinsic structure can 

be made and put as an overlay on the next slide. They found that this technique 

provides  a  more  precise  registration  than  using  fiduciary  markers.  Using  the 

registration (or alignment) feature of MCID, all the sections will be aligned to the 

previous slide.  These images will  then be rendered as individual  data sets in 

VoxBlast (see below).

10
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1.10 3-D Rendering from 2-D Images

VoxBlast (Vaytek Inc., Fairfield, Iowa, USA) is a voxel-based 3-D volume 

rendering system developed by Randall Frank and maintained at the University 

of Iowa’s Image Analysis Facility. VoxBlast creates 3-D projections from stacks of 

registered 2-D images. VoxBlast is measurement oriented. It is designed to let 

the  user  easily  extract  precise  information  from volumetric  data.  Some of  its 

advantage include: multiple platform support;  true 3-D analysis  tools built  into 

software; powerful built-in Palette editor for color and opacity definition; Brainvox 

tracing for  correlating  3-D views with  cross sectional  views;  and  support  tool 

including volumetric math calculations and image analysis.  The most powerful 

tool  is  the  transparency  function,  also  called  the  opacity  function.  The 

transparency function allows the user to see through the whole object with areas 

of interest emphasized according to the desired results.

VoxBlast  Light  is  available  at  no  charge.  VoxBlast  Light  is  similar  to 

VoxBlast except that measurement tools are not available. We will use VoxBlast 

Light  to obtain our preliminary results with 3-D rendering as described below. 

VoxBlast  Light  now  has  expanded  file-reading  capability,  including  BioRad, 

Dicom, 8 and 16 bit TIFF, 8 and 16 bit TIFF multi-image, and 8 or 16 bit raw. 

Hence, both VoxBlast and VoxBlast Light will be able to create 3-D renderings 

from the exported files from MCID v.7.0 above.

The VoxBlast 3-D rendering software was successfully used to develop 

high resolution 3-D images using parallel histological serial sections displaying 
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microvascular and glandular structures in human endometrium (Manconi et al., 

2001).

1.11 Micro-Autoradiographic Fusion Tomography (MAFT)

Three-dimensional micro-autoradiography is difficult to achieve because of 

the time and labor cost involved. We plan to reduce both time and labor by using 

digital micro-autoradiographic images obtained from the Micro-Imager along with 

commercially  available software – MCID v.7.0 and VoxBlast.  The MCID v.7.0 

software together with VoxBlast provides an example of a computer visualization 

system that  is  capable  of  excellent  3-dimensional  reconstruction  from serially 

sectioned material for scientific interpretation and measurement purposes.

MAFT is unique as it provides high resolution of both the radiolabel and 

the cellular structure in 3-D. MAFT is a novel technique that will provide important 

new medical information such as in the investigation of receptor distribution in the 

brain,  and  the  radiation  absorbed  dose  to  cells  in  tissue  from 

radiopharmaceuticals used for therapy.
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Chapter 2
Materials and Methods

2.1 Chemicals

 [14C]-Formaldehyde  (40-60  mCi/mmol,  1-3%  aqueous  solution,  0.1 

mCi/ml), was obtained from American Radio-labeled Chemicals (St. Louis, MO). 

Recombinant human vascular endothelial growth factor, (VEGF165,  carrier-free) 

was  obtained  from  PeproTech  (Rocky  Hill,  NJ).  ScintiSafe  Econo  1  liquid 

scintillation  cocktail  for  radioactive  sample  counting  was  from Thermo Fisher 

Scientific (Pittsburgh, PA).  All other chemicals and reagents were from Sigma-

Aldrich (St. Louis, MO).

2.2 VEGF Radiolabeling

VEGF  was  radio-labeled  via  reductive  methylation  using  a  procedure 

modified  from Kim and Burgess (Burgess et  al.,  2002).  The reaction  mixture 

consisted of 20 µg of VEGF dissolved in 0.19 ml deionized water, 0.1 ml of 0.2 M 

HEPES (pH 7.4) containing 0.01 M nickel chloride and 0.05 ml (5 µCi) of [14C]-

formaldehyde. The reaction was initiated at room temperature by the addition of 

0.01 ml of freshly prepared 0.15 M sodium cyanoborohydride, followed by further 

incubation at 4oC for 20 h. The reaction mixture was transferred to dialysis tubing 

(SpectrPor, 0.32 ml/cm, 12,000-14,000 MWCO; Spectrum Laboratories, Rancho 

Dominguez, CA), and dialyzed at 4oC against 0.9% w/v sodium chloride for 48 h 
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(two changes of 500 ml). An aliquot (~6000 cpm) of the recovered [14C]-VEGF 

was precipitated with trichloroacetic acid (TCA precipitation assay, ref – Goding, 

below) which showed that ~98% of the radioactivity precipitated as protein. Prior 

to animal injections, 200 µg of rat serum albumin (RSA) was added to the sample 

(10:1 w/w ratio of RSA to [14C]-VEGF), and the sample was concentrated at room 

temperature to ~0.085 ml in a centrifugal filtration unit (Microcon YM-10, 10,000 

MWCO;  Millipore,  Billerica,  MA)  spun  at  12,000  x  g.  Almost  100%  of  the 

radioactivity loaded into the filtration unit was recovered in the retentate.

2.3 Subcutaneous Injection

Experiments  were approved  by  the  University  of  South  Florida  Animal 

Care  and  Use  Program.  Rats  (Sprague  Dawley,  male,  375-399  g;  Harlan, 

Indianapolis, IN), were anesthetized with 2% isoflurane in medical oxygen prior to 

injection. For the 2.5 minute experiment, [14C]-VEGF (40  µl containing ~80,000 

cpm; ~10  µg VEGF) was injected into the subcutaneous tissue on the shaved 

back of the rat using an insulin syringe equipped with a ½ inch, 28 gauge needle. 

The approximate duration of the injection was one second. The center of the 

injection site was marked with an indelible pen. After 2.5 min, a full thickness skin 

sample  (14  mm x  14  mm x  ~5  mm depth)  containing  the  injection  site  was 

excised, placed into a plastic tissue mold (#03020; Surgipath Medical Industries, 

Eagle River, WI) and frozen on dry ice to immobilize the [14C]-VEGF in the tissue. 
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2.4 Histological Processing

The  frozen  tissue  samples  were  bisected  transversely  through  the 

injection site and mounted on a cryostat chuck using embedding medium. For 

each  tissue  sample,  ten  consecutive,  10  µm-thick  sections  were  cut  in  the 

transverse plane starting from the center of the injection site and mounted onto 

microscope slides.  Sections were desiccated at  -20oC until  dry,  and stored at 

room temperature with desiccant until imaging.

Distribution of radioactivity within the tissue sections was obtained using 

quantitative digital autoradiography on a Micro-Imager (Biospace Mesures, Paris, 

France).  Each slide was imaged with a five hour exposure, thereby creating a 

black and white representation of the drug dispersal.  The Micro-Imager is also 

capable of saving a black and white optical image which has the same spatial 

orientations as the autoradiographic figure, which will later be used to set image 

registration.

Tissue features within the section are then made visibly evident thru the 

use of  a sample stain.   In this case,  hematoxylin  and eosin (H&E) stain was 

applied.  This allowed for details to be more apparent when optically imaged in a 

microscope using QCapture Pro.

2.5 Sizing Using QCapture Pro

A key part to allowing all of the following operations to commence is that 

the sizing and scale of each image must be equal.  The autoradiographic images 

were saved with the dimensions of 1476 pi. X 1190 pi., where as the registered 
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black and white optical images were saved as 720 pi. X 581 pi. This adjustment 

simply  requires  that  the  optical  image  be  expanded  to  the  size  of  the 

autoradiographic image.  After the sections have been stained, the sample must 

be re-imaged using a microscope with a color camera.  This means that these 

images  will  be  neither  sized,  scaled,  nor  oriented  the  same  as  the 

autoradiograph, and adjusted registered optical picture.  The color images were 

sized 1024pi. X 768 pi., but they could not be simply resized like the black and 

white  images.   Instead,  a  size  relation  had  to  be  found for  an  object  in  the 

pictures.   Using  the  “ruler”  tool  in  QCapture  Pro,  a  measurement  was  taken 

between the same two points on both the black and white registered image and 

the color image.  For this work, the color image had to be shrunk by a factor of 

62% for the scales to be the same.

2.6 Alignment Using MCID

 In order to combine the color and autoradiographic images, it is important 

to  have  them  properly  aligned.   There  is  not  enough  detail  in  the 

autoradiographic picture to be able to find any identifiable landmarks with which 

to orient the color image.  However, the black and white images are registered to 

the autoradiographic images by the nature of how they were created.  Using the 

MCID Analysis software (InterFocus Imaging Ltd, Cambridge, England) the color 

images are rotated and translated so that they are properly registered.  This is 

performed using the “Image Registration” tool which is a built in function of the 

program.  A series of coincident points, three or more, are selected on both the 
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registered black and white image and the color microscopic image.  The software 

is then able to determine the rotation and translation which best brings these 

points together.  This is performed by the computer assuming that the images 

are “rigid,” in that it will not deform either image to force the points to coincide. 

The general equation for this type of transformation takes the form of:

x' = R * x + t (1)

y' = R * y + t (2)

Where  R is an orthogonal matrix which represents the rotation required based 

upon the chosen points.  The t value is a vector which refers to the amount and 

direction of translation calculated.

2.7 Fusion Using MCID

Once the color and autoradiographic images have been registered, they 

can be combined or “fused.”  This basically entails one image being laid over 

another.  In this instance, the autoradiographic images are placed over the color 

images, due to the fact that there is far more information present in the color 

pictures.  This function is also performed using the MCID Analysis software, and 

is highly automated; only requiring the operator to load the two images to be 

fused.  The output of this operation is a single new image which is saved and 

then re-registered to each other for the 3-D rendering.
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2.8 3-D Rendering Using VoxBlast

The serial fused images are now ready to be run in the volume rendering 

program called VoxBlast (Vaytek, Fairfield, Iowa).  This program is capable of 

taking a series of flat, two dimensional slides, and interpolating what the three 

dimensional solid looks like by using a number of selectable algorithms.  This 

program then  allows the  user  to  adjust  their  viewpoint  around,  and  thru  the 

object.  Another important tool incorporated with this program is a feature which 

allows  the  operator  to  essentially  filter  out  any  unwanted colors,  leaving,  for 

instance,  only  the  color  which  represents  the  autoradiographic  portion  of  the 

images.
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Chapter 3
Results

3.1 Micro-Imager

Ten samples spaced 10  µm apart were collected via the procedures in 

chapter 2.  The slides must first be processed via the Micro-Imager due to the 

fact that the procedure of slide staining will wash out the radioactivity.  As was 

stated above, the Micro-Imager is capable of imaging both the autoradiographic 

picture, as well as a registered optical image in black and white.  This can be 

seen be in Figure 1 below.

 

 

Figure 1.  Optical (above) and autoradiographic (below) images of slides #1 and #2 respectively.
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Very little detail can be seen with regard to the tissue types in the optical 

images, but they show enough of the outline that they can be used as references 

for  the stained images which will  be discussed next.   If  the autoradiographic 

image  were  to  be  overlaid  upon  the  optical  image,  they  would  coincide 

completely as seen below, and this is what is meant by “registered” pictures. 

The autoradiographic data can be seen in green.  This is why having the optical 

images is so important.  There is almost no detail in the autoradiographic images 

which corresponds to any obvious feature in the optical image, and at least three 

are required to register an image.  

Figure 2.  Fused optical and autoradiographic image.
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3.2 Histological Processing

In Figure 3 can be seen the first three slides as imaged after the H&E 

stain has been applied.  Upon close discrimination, it is apparent that these three 

images are quite similar, but they do have differences.  Much of this is due to the 

changes in tissue between each slice.  However, on the lower right quadrant of 

slide #2, a major discrepancy can be seen which is very much different from the 

sample on either side.  This is due to a folding of the tissue as it was placed upon 

the slide.  Such artifacts were only found on a couple of the slides, but this type 

of error is one which makes it difficult to later align the images for fusion.

    

Figure 3.  H&E stained slides  #1, #2, and #3 respectively.

As compared to the images in Figure 1, there is much more information 

present to allow someone to identify tissue types.  Had these slides not been 
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stained, very little detail would be evident to the naked eye.  For instance, looking 

just  left  of  center,  a  few blood vessels  can  be seen in  a  deeper  red/purple. 

Depending upon the types  of  structures which are likely to be located in the 

samples, and what differentiations a researcher requires will determine the types 

of stains to be used.

3.3 Sizing Using QCapture Pro

All of the images shown in the sections above started out sized differently. 

In order to perform all of the following operations, it is very important that all of 

the images match in overall size and/or scale.  The black and white optical and 

autoradiographic  images  were  initially  sized  differently,  but  simply  had  to  be 

made to  be  the  same overall  size.   The  fact  that  these  images  are  already 

registered means that  by sizing them the same, the scales will  inherently be 

equal.  The same cannot be said for the stained optical and the black and white 

optical images.  As can be seen in Figure 3, a measurement tool had to be used 

to  measure  the  number  of  pixels  between  two coincident  points.   Using  the 

distances,  a  value  for  the  percent  reduction/enlargement  can  be  found.   For 

instance, in this study, the stained optical image had to be reduced to 38% of its 

original size.
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Figure 4.  Screen shot of measurement tool in QCapture Pro.

3.4 Aligning Using MCID 

In order to fuse the autoradiographic and stained images, they must first 

be registered to one another.  Due to the fact that there are no alignment marks 

visible on the slide, the registration has to be done by hand.  That means that the 

operator  must  look  at  both  images,  and  determine  at  least  three  points  of 

commonality,  and  then  place  a  marker  on  each  image.   This  inherently 

introduces a source of error, not to mention it is time consuming, but for these 

intents and purposes, this is adequate.  The MCID Analysis package does have 

an alignment tool, which helps to stream line the process.  In the future, it will be 
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worth spending more time learning about the functions within the software, and 

becoming capable of writing macros to perform much of this task.  

The figure below shows the black and white optical image, as well as a 

registered stained image.  Note that both the orientation and size are almost the 

same.  The registered stained image below also shows better why the scales 

must be the same on all of the pictures.  The white region with the pink specimen 

within is the stained image,  and the surrounding black is an extended region 

which did not exist in that picture.  That region was created by the computer so 

that the overall area of these two images is equal.

Figure 5.  Black and white optical image and registered stained slide. 

3.5 Fusion Using MCID 

Once the images were aligned,  as shown above,  the newly registered 

stained image is ready to receive its autoradiographic overlay, or “fusion.”  This is 

one reason why MCID Analysis was chosen to work with.  The fusion function is 

almost entirely automated.  The operator simply needs to open the image which 
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will act as the underlaying and the overlaying image, in this case, the registered 

stained image and the autoradiographic image, respectively.  It is important to 

recognize that the stained image is the underlayment because it contains more 

information.  The autoradiograph is made up of a series of points which represent 

radiological events, and if properly exposed should have far less data than the 

stained image.

  

Figure 6.  The autoradiograph (top left) is combined with the registered stained image (top right) 

to produce the fused image at the bottom.
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3.6 3-D Rendering Using VoxBlast

Once the fused images are registered to each other, it is time to render 

them.  VoxBlast makes this operation fairly easy, only requiring a few variables to 

be set and an indication where the images have been stored.  Due to the fact 

that there were only ten consecutive slides to work with, the slide thicknesses 

were exaggerated so that a depth could be seen.  The manufacture suggests not 

having  the  program interpolate  more  than  5  pixels  deep  for  best  clarity  and 

reliability.  This leads to equation 3 below, where T is the sample thickness, DA is 

the actual  distance measured, and DI is the number of pixels making up that 

distance.   The distances are measured with QCapture Pro,  by looking at  the 

microscopic view with a known calibrator.

T = 5 * ( DA / DI ) (3)

One of the most significant tools in VoxBlast pertains to how it performs 

the rendering.  Some of the algorithms allow for filters to be applied, so as to 

exaggerate or eradicate certain colors.  This will prove to be quite useful when it 

comes to fused images.  It enables the user to re-extract the autoradiographic 

date in three dimensions, and gain a better knowledge of the distribution in any 

plane.  Figure 7 shows the ten slides set to be viewed as a solid, and Figure 8 

shows  the  rendering  with  some  of  the  background  tissue  filtered  out  to 

accentuate the blood vessels.
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Figure 7.  3-D rendering of slides as a solid.

Figure 8.  3-D rendering of slides with some background filtered out.
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Another useful part of this program deals with the creation of animations 

automatically.  Much of the details can be much more easily discerned as  the 

rendering is rotated.  VoxBlast has some pre-designed movie “script” built into 

the system, but it isn’t difficult to write custom scripts to more readily show any 

fine points.  Unfortunately, movies cannot be shown in a report, so the true power 

of this software package is not easy to demonstrate.  

In the Figure below can be seen the user interface, which consists of three 

primary windows:  control panel, status window, and the rendering window.  The 

control panel is where most of the setup and adjustment is done.  The status 

window  shows  what  the  program is  currently  doing,  and  can  be  used  as  a 

command prompt rather than using the graphical interface of the control panel. 

The rendering window works just as it sounds, it displays the current rendering 

as is set by the control panel or command prompt.  In Figure 8, there is a fourth 

window open on the lower left of the screen shot, this is the color palette tool, 

which is used in conjunction with the various algorithms to accentuate or negate 

certain colors.
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Figure 9.  Screen shot of the VoxBlast user interface.
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Chapter 4
Discussion

4.1 Histological Processing

When preparing a sample to be sectioned, it  is very important that the 

thickness be appropriate.  As can be seen in Figure 10, as the interpolated areas 

between the slide become larger, small spots and point begin to stretch over the 

gap, which turns something which should look round into a cylindrical  shape. 

This distortion is easily remedied before the slices are cut.  Vaytek recommends 

that a spacing of no more than five pixels be used.  This means that the user 

needs  to  determine  the  appropriate  scale  (μm/pixel)  for  what  they  intend  to 

investigate, and multiply it by 5 pixels to determine the maximum thickness for 

each section.  This means that the optimum resolution for the slides which were 

worked with would have been 2 μm/pixel.

Figure 10.  Side view of 3-D rendered solid.
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Another  important  consideration  pertains  to  the  stain  used  after  the 

autoradiography.  It is apparent that the purpose of a stain is to allow ease of 

identification to structures within a tissue sample.  However, it is also important to 

keep in mind that the autoradiographic image must also be easy to extract after 

the fusion has taken place.  This means that if a stain is used which will exhibit 

every color of the rainbow, it will be very difficult to filter that out later without 

loosing pertinent data about the radioactivity.

4.2 Sizing and Alignment

The sizing  and alignment  of  the  slides  is  critical  to  making  everything 

happen.   None  of  these  software  packages  can  perform  their  various  tasks 

meaningfully with out the proper registration and scaling.  This is also the most 

time consuming part at present.  It is apparent that should MAFT be used on a 

larger  scale,  this portion must be made automatic.   This is the beauty of the 

MCID Analysis software.  It  has the ability to run “macro” programs within its 

framework.  A macro can be used to identify markers which are frozen vertically 

along side the sample.  These markers would essentially act as guides to allow a 

program which can identify them, and use them not only as registration marks, 

but as references to account for some inaccuracies incurred during the slicing 

and mounting of specimen.
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4.3 Fusion Using MCID

The process of image fusion is actually quite simple to perform.  As with 

many things,  the devil  is  in  the details.   The work  done with  the sizing  and 

alignment  of  the  slides  will  determine  the  quality  of  the  outcome.   Another 

important detail which must be worked out before this stage is what color to use 

for the autoradiographic image.  It is imperative that a distinct color be chosen 

which is not present in the stained image.  If this were not done, false readings 

could  be picked up,  or  the  radiographic  data  may be lost  as  a result  of  the 

filtering process.

4.4 3-D Rendering Using VoxBlast

As with the fusion of images, it is very important that the alignment of the 

images be fairly close.  This is another reason why having an automated process 

which can handle the majority of the monotonous job of aligning the images is so 

desirable.  The process of rendering the image is very straight forward, as can be 

seen in Appendix B.  The finesse comes into play as the operator determines the 

best algorithm to be used, and adjusts the color palette to negate the background 

image.  This research project is limited to only operating with the basic filters and 

algorithms  due  to  the  shear  amount  of  power  which  is  housed  within  both 

VoxBlast  and  MCID Analysis.   Using  3-D  rendering,  in  combination  with  the 

cutting plane tool also found in VoxBlast, will allow an unprecedented view into 

what is happening in multiple planes within a test specimen.
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Chapter 5
Conclusion

5.1  MAFT

Micro-autoradiographic  fusion  tomography  (MAFT)  is,  and  will  be,  an 

incredibly useful tool at the disposal of researchers.  Micro-autoradiographs are 

often  of  little  use  without  the  context  contained  within  cellular  level  optical 

images.   MAFT  allows  for  that  context  to  be  re-combined  with  the 

autoradiographs and for it to then be added or subtracted at will.  Far more viable 

data can be garnered for the dispersal characteristics of radiolabeled drugs and 

substances in this manner, as compared to current standards.  Instead of being 

limited to the extent of the 2-D slides which are created, a close approximation to 

the sample can be created virtually and then re-cut in any orientation desired to 

better characterize drug diffusions.  Due to that fact that the autoradiographs are 

done using the digital Micro-Imager, there is a much quicker turn around rate and 

inherently  less  labor  required  as  compared  with  traditional  micro-

autoradiography.   This  application  of  MAFT has  one  further  benefit  of  being 

performed with commercially available products, which means that it is available 

to a much more vast audience than a code which has to be created for each 

institution or research group.
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5.2  Future Work

Although MAFT will be a great tool at the disposal of researchers, it still 

requires much refining to cut down on the amount of labor required to perform all 

of the intermediate tasks.  The most significant and time consuming part of the 

process described above pertains to the preliminary alignment for image fusion, 

as well as the secondary alignment need for VoxBlast.  Fortunately, this aspect 

also shows the most promise for improvement, with the implementation of only a 

couple improvements.

One  potential  area  to  investigate  pertains  to  the  methodology  of  the 

freezing and sectioning of samples.  If, after the sample has been frozen, some 

sort of artificial marker is implanted within the block, yet away from the sample, 

which  would  allow  for  registration  marks  to  be  present  on  each  slide,  the 

registration process will be vastly improved.  These marks will need to be marked 

with a radiolabel, as well as be visible with a microscope.  Once the slides have 

been read and loaded into the MCID Analysis  software, each image will  only 

need to be registered once, and the need for the user to identify useful coincident 

points will have been eliminated.

A second aspect to be looked into deals with the advanced properties of 

the  MCID  Analysis  package.   This  program  allows  for  the  creation  of  sub-

programs,  called  macros,  which  could  be  created  to  perform  the  tasks  of 

registration, as well as fusion.  The MCID software uses its own language to call 

upon various components, and will likely require an engineer to learn it.  Once 
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this subroutine is created, it  should be easily modified to work with a host of 

different sample sizes and types.
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Appendix A:  MAFT Protocol

1)  Using QCapture Pro, the black and white optical image acquired from 

the Micro-Imager and the stained optical image acquired from a microscope 

mounted camera is measured at two conspicuous points on the same slide using 

the “measure distance” function.  These two values can be used to determine the 

factor of reduction/enlargement.

Figure 11.  Measuring coincident points on a slide to determine the factor of 

reduction/enlargement.

2)  Select the following commands:  Edit >> Resize

3)  Use the factor found above to adjust both the vertical and horizontal 

image size.
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Appendix A:  (Continued)

4)  The stained optical image must now be registered to the black and 

white optical image.  This task is performed with the MCID Analysis software 

package.  The stained image is loaded into the channel 1 window,  and the 

optical image is loaded into the channel 2 window.  Then use the following 

commands to access the registration tool:  

Transform (in operations tool bar on the left side of the screen) >> 

Transform (top command line) >> Image Registration.

Figure 12.  Loading the stained and optical images into the MCID Analysis software.
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Appendix A:  (Continued)

5)  At least three coincident points must be chosen on each image, as 

shown below.  The reference channel is the image which will not be changed by 

the registration process, and conversely the source channel is what will be 

changed.  After the points have been aligned on each window, press “Apply,” and 

save the output image in channel 3.

Figure 13.  Choosing coincident points for image registration.
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Appendix A:  (Continued)

6)  The gray-scale autoradiograph saved by the Micro-Imager must be 

converted so that the data can be differentiated from the stained optical image. 

This is accomplished using the QCapture Pro program.  With the image loaded, 

use the following commands:

Edit >> Convert to >> Gray Scale 8

Process >> Pseudo-Color

7)  An appropriate color scheme should be chosen and then the  image 

must be converted back to a different format.

Edit >> Convert to >> RGB 24

Figure 14.  Giving the black and white autoradiograph some color.
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Appendix A:  (Continued)

8)  It is now time to fuse the stained image with the autoradiograph.  This 

is performed in the MCID Analysis program.  The autoradiograph is loaded into 

channel 1, and the registered stained image is loaded into channel 2.

Transform >> Image fusion >> Basic

9)  The start channel is selected to be 1, the end channel is 2, and the 

output will be loaded into channel 3.  This image is then save, with the name 

being the same for all except for the last two or three digits.  These must be 

numbers which increase by one for each file.

Figure 15.  Accessing the image fusion tool in MCID Analysis.
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Appendix A:  (Continued)

Figure 16.  Setting up the fusion tool.
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Appendix A:  (Continued)

10)  The images now need to be realigned with each other so that they 

can next be rendered using VoxBlast.  The procedure is the same as above.

Transform (in operations tool bar on the left side of the screen) >> 

Transform (top command line) >> Image Registration

Figure 17.  Registering the fused images.
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Appendix A:  (Continued)

11)  The next step is to render the 3-D image using the series of slides 

which were just prepared. To load them:  File >> New Dataset Definition.

Figure 18.  VoxBlast upon startup.
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Appendix A:  (Continued)

Figure 19.  Commanding VoxBlast to open a new definition set.
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Appendix A:  (Continued)

12)  In the Input Template field, a “%” is used to represent the part of the 

file names which are all the same.  The easy way to create the template is by 

clicking on the “…” and selecting the first image.  One will also have to put in the 

starting number, ending number and step size to allow VoxBlast to call up the 

pictures.  The interpixel value is the size of on pixel, in μm for this instance.  The 

interslice is the thickness between each section.  These values can be changed 

at a later time without difficulty.

Figure 20.  VoxBlast volume description window.
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Appendix A:  (Continued)

Figure 21.  VoxBlast loading the data set.
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Appendix A:  (Continued)

13)  It is now time to work with the various modes and filters to garner the 

desired results.

Figure 22.  VoxBlast with a loaded data set.
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Appendix B:  Canceling Background in VoxBlast

What follows is a series of images showing how the background can be 

removed  from  the  rendering,  thereby  allowing  a  better  view  of  the  desired 

subject.  The goal of this exercise was to attempt to isolate the blood vessels 

found  at  the  center  of  the  slide.   To  accomplish  this,  a  maximum  intensity 

projection  (MIP)  algorithm is  used,  which basically  allows the  user  to  negate 

certain colors by minimizing its intensity.  The bottom left window on the screen 

shots is called the color palette editor, and the yellow line passing through the 

middle of the graph is what controls the intensity of the colors by manipulating its 

shape.  Figure 23 through 27 are basically a progression of removing the lighter 

background to expose the darker blood vessels.
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Appendix B:  (Continued)

Figure 23.  The palette editor in VoxBlast.
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Appendix B:  (Continued)

Figure 24.  Turned volume with some background removed. 

58



www.manaraa.com

Appendix B:  (Continued)

Figure 25.  Another view of the solid with some background removed.
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Appendix B:  (Continued)

Figure  26.  View of the same solid with more background removed.
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Appendix B:  (Continued)

Figure 27.  Same  volume but with a majority of the background removed.
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Appendix B:  (Continued)

In the screen below, there is a new window at the lower center.  This is the 

movie generation window, which allows for simple movies to be automatically 

saved in a number of formats.  The generator is capable of capturing rotation 

about the X, Y, and/or Z axis.

Figure 28.  Movie generation window in VoxBlast.
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Appendix B:  (Continued)

Below is an example of another way to see through a sample.  Instead of 

removing the background colors all together, a reverse ramp function is used to 

make the lighter colors much more transparent than the darker colors.

Figure 29. The color palette with a reverse ramp function.
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